Callosobruchus phaseoli (Gyllenhal, 1833) (Coleoptera, Chrysomelidae, Bruchinae): a new invasive species in Kazakhstan

Izbasar I. Temreshev¹, Vladimir L. Kazenas¹

¹ LLP Educational Research Scientific and Production Center "Bayserke-Agro", 3 Otegen Batyr St, Arka-bay village, Panfilov district, Almaty oblast, Kazakhstan

Corresponding author: Izbasar I. Temreshev (temreshev76@mail.ru)

Academic editor: A. Matsyura | Received 15 May 2020 | Accepted 12 June 2020 | Published 23 July 2020

Citation: Temreshev II, Kazenas VL (2020) *Callosobruchus phaseoli* (Gyllenhal, 1833) (Coleoptera, Chrysomelidae, Bruchinae): a new invasive species in Kazakhstan. Acta Biologica Sibirica 6: 87–92. https://doi.org/10.3897/abs.6.e53070

Abstract

An invasive seed-beetle species cowpea weevil *Callosobruchus phaseoli* (Gyllenhal, 1833), was found in the south-eastern Kazakhstan (Almaty city) for the first time. Its areal includes India (species origin), South and Central America, Europe, Middle East (Israel), North Africa, Arabian Peninsula, Far East, China, Japan, Sri Lanka, Indonesia, Burma, Philippines, Hawaiian Islands, Australia, and Oceania. Damaged plants are adzuki bean *Vigna angularis* (Willd.) Ohwi & H. Ohashi (1969), mung bean *Vigna radiata* (L.) R. Wilczek, broad bean *Vicia faba* Linnaeus, 1753, pea *Pisum sativum* Linnaeus, 1753, pigeon pea *Cajanus cajan* (L.) Huth, 1893, hyacinth bean *Lablab purpureus* (L.) Sweet, 1826, *Wisteria* sp., lima bean *Phaseolus lunatus* Linnaeus, 1753, common bean Phaseolus vulgaris Linnaeus, 1753 and other species of beans, chickpea *Cicer arietinum* Linnaeus, 1753, *Sesbania* sp., rattlepod *Crotalaria stipulata* Roth., lupine *Lupinus* sp. Emerged beetles immediately mate and begin to lay eggs on the same day. Beetle damage both in field and in storage. We were not able to find the species during the monitoring of agriculture lands and natural landscapes near the city. We assumed that the invasion occurred recently and the species did not have time to spread outside Almaty. Since *C. phaseoli* was discovered in Almaty, which is a transit crossroad for many trade routes, further species distribution should be predicted. The most probable corridor for further invasion of cowpea weevil in Kazakhstan is the south and southeast parts of the country, namely Almaty, Zhambyl, Turkestan, and Kyrgyz oblast’s.

Keywords

Callosobruchus phaseoli, Coleoptera, Chrysomelidae, Bruchinae, seed-beetles, invasive species, Kazakhstan
Introduction

Beetle body is 1.8-3 mm long, pitch-black brown, pronotum and elytra reddish. The pubescence is yellowish, thick, and hard. The head is small, the forehead between the eyes with a narrow keel, the eyes are large, round, coarse-mesh; antennae dark, 4 first and 4 last segments reddish-yellow, 3rd segment reverse conical, almost twice as long as 2nd, 4th triangular, 5-10th acutely elongated, triangular, strongly serrate in male. Pronotum conical, rather densely pubescent, with 2 longitudinal darker stripes; lateral margins almost straight; the middle lobe at the base of the pronotum is raised, with a deep longitudinal groove, covered with a thick, whitish, opaque pubescence. Scutellum densely pubescent. Lateral margins of elytra slightly rounded, raised shoulders; the width of 1 elytra is almost 3 times less than the length; pubescence is yellowish; The 2nd interval from the base to the last quarter is densely pubescent with light hairs, the 4th, 6th and 8th - with the same, but shorter bands located closer to the apex. On the sides of the elytra there are lateral dark spots. The pygidium is reddish, with a dark spot at the apex on both sides. The egg is milky white, 0.8 mm long and 0.55 mm wide.

The larva is white, curved, up to 5 mm long. Pupa is white, up to 3 mm long. The female lays eggs individually or in heaps of 3-6 pieces on both developing and ripened or dry stored beans of fodder plants.

Material and methods

Results

C. phaseoli is recorded in Kazakhstan for the first time. The seed-beetles was found in Almaty at one locality in a private house. Infestation of seeds reached 50 % and the bean seeds where the pest was discovered were previously intact. The seeds were grown from last year seeds that were stored in the house for about five years and evidently came from another local breeding center. We suggested the weevils came into the stored seeds from the external environment.

Material examined. 3 males, 5 females, 15.12.2019, Almaty city, Bostandyk district, Alatau microdistrict, in a residential building, in common bean seeds, V.L. Kazenas (Figs 1–2).

Discussion

The species was not previously observed in Kazakhstan. Now, apparently, the city of Almaty has its self-reproducing population. We did not find this species when monitoring the agriculture lands and natural landscapes near the city, and examined the materials of colleagues. We suppose that the invasion occurred recently and the species did not have time to spread outside the Almaty. Invasion corridor: The most obvious route for C. phaseoli to enter Kazakhstan is through an invasion from the People's Republic of China, from where a variety of plant products come daily to the city of Almaty, including legumes. Moreover, the pest spreads at all stages of development with infected legume seeds.

Since C. phaseoli was discovered in Almaty, which is a transit crossroad for many trade routes, its further distribution in the country should be predicted. The most probable corridor for further invasion of cowpea weevil in Kazakhstan is the south and southeast parts, namely Almaty, Zhambyl, Turkestan and Kyzylorda oblast. Invasions of other species of seed-beetles, Megabruchidius dorsalis (Fahraeus, 1839) and Acanthoscelides pallidipennis (Motschulsky, 1874), which were introduced into the Almaty and Turkestan oblast and are currently expanding there, have already been noted (Temreshev & Valieva 2016a, b, Temreshev 2017b, Temreshev &
The central and northern regions are less suitable for the invasion of *C. phaseoli* due to the local weather and climate conditions and set of crops grown with cereals and oilseeds domination. We suggested that the warehouses and residential premises in stored products from fodder plants should be potential conditions for the species development. The same situation is in the western and eastern regions of Kazakhstan. Nevertheless, the Kazakhstan quarantine services should pay serious attention to the further expansion of *C. phaseoli* within the country, since this species is a dangerous polyphagous pest of food, fodder and decorative legumes.

Acknowledgements

The work was carried out as part of the Ministry of Agriculture of the Republic of Kazakhstan project BR 06249249 “Development of an integrated system for increasing productivity and improving breeding qualities of farm animals, for example, Bayserke Agro LLP” on subproject 2 (“Improving the technology of cultivation and harvesting of forage crops”).

References

Figure 2. Common bean seed damaged by seed-beetle *Callosobruchus phaseoli* (Gyllenhal, 1833).

